大发五分快三规律“对抗性神经网络”技术有助于改进现有人工智能算法

  • 时间:
  • 浏览:0
  • 来源:彩神-彩神官方

 当前,人工智能的计算力、识别力快速发展,但想象力、创造力仍有缺乏。为破解你四种 局限,科学家设计出一套类式“猫鼠游戏”的技术,我能 工智能在自动学习中变得更“聪明”。

  你四种 技术被称为“对抗性神经网络”技术,美国《麻省理工学院技术评论》日前将其评为2018年“全球十大突破性技术”之一。

  人工智能的识别能力有赖于海量样本学习,比如给它“看”数以百万计的鸟类图片,它要能“学精”辨认鸟类,而生成逼真的鸟类图像则更难。其局限性在于,什么都有有事物缺乏海量样本,什么都有有你四种 学习还依赖人类的“灌输”,缺少自主性。这限制了人工智能的发展,很重是向想象力、创造力你四种 更高层次的进阶。

  美国人伊恩·古德费洛2014年在加拿大蒙特利尔大学读博士时想出一套设计方案:用2个 神经网络,进行数字版的“猫鼠游戏”——2个 负责“造假”,2个 负责“验真”,从而在对抗中不断提高。

  负责“造假”的神经网络称为“生成网络”,它法律最好的办法所“见过”的图片来生成新图片,这需用它总结规律、发挥想象力和创造力;负责“验真”的神经网络称为“判别网络”,它需用凭训练每项的“经验”,来判断某张图片是真实事物,还是生成网络“自创”的“假货”。

  生成网络不是而是一现在结束就足够“聪明”,比如它因为“认为”鸟类会有3条腿,但是的“假货”当然很容易被发现。但随着机器学习的深入和反复对抗练习,生成网络对事物的理解越发深刻,最终生成足以“以假乱真”的作品。

  但是的神经网络具有广泛应用价值。比如在自动驾驶领域,人工智能因为创造出权海量接近真实的合成图片,所含各种情况表下的行人、障碍物等路况,自动驾驶系统使用那些图片展开自我训练,将有助大幅提高应用性。

  香港中文大学教授李鸿升认为,除了在机器翻译、人脸识别、信息检索等诸多方向的具体应用,对抗性神经网络的价值和意义还在于其所含的对抗性思想,这有助改进现大家工智能算法。

  从技术上看,对抗性神经网络因为接近成熟 是什么图片 图片 的句子期期期 图片 。来自美国芯片企业英伟达的研究人员用明星照片训练出一套系统,进而生成了数百张根本不所处但看起来很真实的人脸照片。还有研究团队让系统生成看起来十分逼真的梵高油画。

  展现巨大潜力的一块儿,这项技术发展带来的负面影响我希望容忽视。比如不法分子因为利用此类系统制造出权图片甚至视频来混淆视听,给监管、安全带来新挑战。古德费洛就表示,他当前的研究重心就在于正确处理类式技术的滥用问題图片,希望它“不至于误入歧途”。

  中国科学院自动化研究所副所长刘成林介绍说,中国的研究机构目前致力于研究对抗性神经网络理论的进一步改良及优化。对抗性神经网络的理论基础、算法和应用,都还有很大的发展空间。

  中国企业界则更倾向于把技术应用在服务中,并在什么都有有领域达到了业界领先。比如,利用这项技术构建语音识别框架,或借此技术生成训练数据集以优化车牌精准识别功能。

  《 人民日报 》( 2018年04月02日 20 版)

(责编:冯粒、袁勃)